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A large number of investigations has been devoted to the problem of the 
formation and the development of a crack during brittle fracture of 
solids. The first of these was the well-known work of Griffith [l] de- 
voted to the determination of the critical length of a crack at a given 
load, i.e. the length of a crack at which it begins to widen catastrophic- 
ally. Assuming an elliptical form of a crack forming in an infinite body 
subjected to an infinitely homogeneous tension, Griffith obtained an ex- 
pression for the critical length of a crack as that corresponding to the 
total.of the full increase in energy (equal to the sum of the surface 
energy plus the elastic energy released due to the formation of the 
crack). 

In recent years, in connection with the numerous technical applica- 
tions regarding the problem of cracks, the number of investigations has 
increased, among the first of which we ought to name the works of Orowan 
and Irwin, general izing and refining Griffith’s theory. A bibliography 
and a short &urn6 of these works can be found in the recent works of 
Orowan [ 2 f , Irwin [ 3 1 , and Bueckner [ 4 1. 

The development of cracks in brittle materials can be depicted in the 
following fashion. In the material there are a large number of micro- 
cracks. Upon an increase in load in a given spot of the body, a stress is 
reached sufficient for the development of the micro-crack existing at 
that spot to a certain size. The beginning of the development of the 
micro-crack is determined by some condition, because in view of the fact 
that usually the size of the micro-crack is small in ComParison with the 
characteristic linear dimension of the stress change, the state of stress 
in the surrounding area of the micro-crack can be represented in accord- 
ance with Griffith’s scheme in the form of a uniform infinite tension. 
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In the course of its development, the dimensions of the crack increase 

and finally become equal to the characteristic dimension of the stress 

change. Under determined conditions (for example, when the forces are not 

too large and are applied sufficiently far removed from the boundaries 

of the solid) the developing crack is stopped upon reaching its deter- 

mined length, and the solid can remain in this state a long time provided 

there is no change in the loading. 

In the following study equilibrium cracks are considered, i.e. cracks 

forming in a brittle solid subjected to a given system of forces, con- 

stant and not decreasing in time. Apparently the first ideas concerning 

equilibrium cracks are met in the works of Mott 151 and Frenkel’ f6]. 

These ideas are similar but were arrived at independently. These works 

contain also a critical analysis of Griffith’s theory. Both these authors, 

however, limited themselves to qualitative considerations, proceeding 

from the assumption of a crack of infinite length. 

In our work the question concerning equilibrium cracks forming during 

brittle fracture of a material is presented as a problem in the classical 

theory of elasticity, based on certain very general hypotheses concern- 

ing the structure of a crack and the forces of interaction between its 

opposite sides, and also on the hypothesis of finite stresses at the 

ends of the crack, or. which amounts to the same thing, the smoothness of 

the joining of opposite sides of the crack at its ends. The latter hypo- 

thesis was first put forth by Khristianovich 171 in his consideration of 

certain problems in the formation of cracks in rocks. Using this hypo- 

thesis it seemed possible to solve a series of problems related to the 

development of cracks in rocks [ 7-111 . 

In the consideration of problems related to rocks, one may evidently 

neglect the effect of the cohesive of the material as compared with the 

effect of rock pressure, so that the neglect of the cohesive force of the 
material in reference [7-111 can be justified. However, in other problems 

of brittle fracture (for example, in problems of brittle fracture of 
metallic structures) factors of the type of rock pressure are absent, and 

the consideration of cohesive forces of the material becomes absolutely 

necessary. It seems that the intensity of the cohesive forces and their 
distribution can be characterized with sufficient accuracy by some new 

universal property of the material which we call the modulus of cohesion. 

Moreover, the dimensions of the cracks and their other properties are 
uniquely determined by the applied loads and the cohesive modulus. To de- 

termine the cohesive modulus of a material one can use comparatively 

simple tests. 

l.Basic ideas and hypotheses. Statement of the problem. 
kt us consider e~ilibri~ cracks in a brittle material, i.e. cracks 

maintaining constant dimensions under the influence of a given system of 



624 C. I. Barenblatt 

forces. Moreover, we shall be limited here to the consideration of the 
simplest case, cracks lying in one plane (so that points at the surface 

of the crack in the undeformed state are located in one plane, the plane 
of the crack). This case occurs when the applied stresses are symmetrical 

relative to the plane of the crack; the general case will be considered 

separately. 

Fig. 1. Fig. 2. 

Thus, the following problem is considered (Fig. 11. A given breaking 

load synrnetrical relative to the plane of the crack is applied to an iso- 

tropic, brittle, elastic solid whose dimensions we assume are large in 
comparison with the length of the crack. Moreover, it is assumed that the 

composite force applied from each side of the crack is limited. In par- 

ticular the load can be applied on part of the very surface of the crack. 
‘Ihe stresses in the solid away frem the crack evidently converge to zero. 

If the applied loacl is sufficiently large, there occurs a brittle 

fracture of the material &ich, if left to chance, must occur in the 

plane of syrnnetry of the applied load, Moreover, a crack is formed which 
widens and reaches certain dimensions. ‘I&e problem is to find the crack 

dimensions corresponding to the given load and other crack parameters. 

let us turn first to the investigation of a more simple case when the 
load is applied to the edge of the crack surface. Thus, it is assumed 
that in the body there is a certain original dimension on which is im- 
posed some rupturing load, which we assume is normal to the plane of the 
crack. Brittle fracture occurs ‘art 4 this fracture is widened (remaining 

flat because of syrnnetry of the lohd and the isotropy of the solid) to 
certain definite measurements. 
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lhe cross-section (a) and the plane (b) of such a crack are shown 

schematically in Fig. 2. 'lhe crack is divided into two regions: region 1 

(the inner region) and region 2 (the terminal region). In the inner region 

the opposite sides of the cracks are at a significant spacing so that 

interaction between these sides does not occur. 'lhe inner region of the 

crack falls into two sub-regions la and lb; in the first the applied load 

acts on the opposite sides of the crack, and in the second the opposite 

sides of the crack are free from stress. 

In the terminal region the opposite sides of the crack come close to 

each other so that there are very large interaction forces attracting one 

side of the crack to the other. As is known, the intensity of the 

attractive force acting in the material strongly depends upon the dis- 

tance, at first growing rapidly with an increase in the distance y between 

the attracting bodies, from a normal interatomic distance y = b for which 
the intensity is equal to zero, up to some critical distance where it 

reaches a maximum value equal to the order of magnitude of Young's modulus, 

after which it rapidly falls with increasing distance (Fig. 3). 

b 

Fig. 3 

The accurate determination of the system of cohesive forces acting in 

the terminal region is difficult. However, one can introduce certain 

hypotheses which permit limitation to one composite universal character- 

istic distribution of cohesive forces for a given material. 

First hypot~s~~, The di~nsion d Of the terminal region is small in 
comparison with the size of the whole crack. 

Second hypothesis. The distribution of the displacement in the terminal 
region does not depend upon the acting load and for the given material 
under given conditions (temperature, composition and pressure of the sur- 
rounding atmosphere and so forth) is always the same, 

In other words, according to this hypothesis, the ends in all cracks 

in a given material under given conditions are always the same. bring 

the propagation of the crack the end region merely moves over to another 

place, but the distribution of the distortion in the sections of the 

terminal region with planes normal to the crack contour remains exactly 
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the sane. The cohesive forces attracting the opposite sides of the crack 
to each other depend only on the mutual distribution of the sides (i.e. 
on the distribution of the displacement); therefore, according to the 

formulated hypothesis, these stresses will be the same. 

The fixed shape of the terminal region of the crack corresponds to 

the maximum possible resistance. We emphasize that in view of the irre- 

versibility of the cracks occurring in the majority of materials, the 

second hypothesis is applied only to those equilibrium cracks which are 

formed during the primary rupture of the initially unbroken brittle solid 
and not to those cracks which are formed at an artificial notch without 

subsequent propagation or during a decrease in load resulting from 

previous cracking at some larger load. For the latter types of cracks 
the stress in the terminal region can be different (smaller); these types 

of cracks are excluded from this discussion. 

Third hypothesis. The opposite sides of the crack are snwothly joined 
at the ends or, which amounts to the same thing, the stress at the end 
of a crack is finite. 

(As we noted above,this hypothesis was first expressed by Khristiano- 

vich in relation to the formation of cracks in rocks. ) 

‘Ihe indicated hypotheses make possible the solution of the problem 

under consideration. Let us mention the difference appearing in the case 

where the applied loads are not on the surface of the crack but inside 
the solid. In principle nothing is changed in this case. Actually, we 

shall represent the state of stress acting in the solid with a crack 
under the action of a certain load applied inside the solid, by the sum 
of two states of stress. &e of these states corresponds to the state of 

the continuous solid without the crack, a state appearing under the 

action of a given loading system. The other state of stress corresponds 
to the state in a body with a load applied on the surface of the crack. 

‘lhe composite normal and shear stresses on the surface of the inner 

region of the crack must be equal to zero because the surface of the 
inner region of the crack is free of stress. Iherefore, the load applied 

to the surface of the inner region of the crack represents a compressive 

normal stress, equal in magnitude and opposite in sign to the tensile 
stress appearing in the plane of synmetry of the applied load in the body 

without the crack. In the terminal region for the second state of stress 
the noxmal stresses are equal to the stress of the cohesive forces, by 
deduction corresponding to the stress of the first state of stress. In 

view of the fact that the plane of the crack is the plane of symmetry of 
the applied load, the shear stresses on the surface of the crack are 
absent. The normal displacements of the points of the surface of the 

crack are determined only by the second state of stress, in so far as 
they are equal to zero in the first state. 
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Thus, the change in corrparison with the special case considered 
earlier consists in the fact that the inner region of the crack now does 
not fall into tm sub-regions, and the loading of the surface of the 

crack occurs along the whole inner region. 

The three hypotheses formulated above are applied also to this more 

general case. With reference to the first and the third hypothesis this 
does not require elucidation. As for the second hypothesis, the possibil- 
ity of its application is explained by the fact that changes in the 

applied stresses in the terminal region under the influence of the 

applied load are of a very much larger order than the applied load. As 
was shown earlier, the stresses in the terminal region are of the order 

of Young’s modulus, i.e. they significantly surpass the magnitude of the 

applied load. Therefore, in the general case too one can neglect changes 
in stresses applied to the surface of the crack in the terminal region 

under the influence of the applied load and consider only the distribution 

of stresses and displacements in the terminal region not dependent upon 
the load, i.e. one can apply the second hypothesis. 

2. Axially symmetric cracks. (1) let the crack have the form of 
a round slit of radius R. On both sides of the portion of the surface of 
the round slit (Fig. 4) at values of the running radius r, smaller than 

Fig. 4. 

some radius rO ( ra ius of the region of the load application), compress- d 
ive normal forces 2% = - p(r) are active. The part of the surface of the 
slit corresponding to the intermediate region rO < r < R - d, is free of 
stress, In the terminal region R - d < r < R, tensile stresses C(r) con- 
trolled by cohesive forces act. 

As was shown by Sleddon [ 121 , the distribution of normal displacements 
of points of the surface of the round crack in an infinite elastic solid, 
if a normal stress - g(r) acts on this surface, and shear stresses are 
absent, have the form: 
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uI= 4(1-+)I? 

XE (2.4) 

Here E is Young’s modulus and v is Poisson’s ratio. Partial integra- 

tion produces this expression in the form 

u= 4(1-+)R 
xl? 

(2.2) 
According to the condition of smooth joining of the opposite sides of 

the crack at its ends, this evidently leads to the relationship 

Differentiating (2.2) we obtain 

I 1 1 

aw 4 (1 -9) R 

ap= ?TE i 

‘lhe second member of the right-hand side of this relationship, under 
broad assumptions relative to the function g, converges to zero for 
p + 1, from which it is evident that to fulfill condition (2.3) it is 

necessary to fulfill the relationship 
1 

(2.4) 

In this same form relationship (2.4) was obtained in reference [ 91 as 

the condition of finiteness of the stress at the edge of an axially- 

symnetric crack. In the case we are considering 

I 

P (r) (0 < r < fo) 

(ro < r d R-d) 

s(r)= [$I’(,) (II--d<r<R) 
(2.5) 

LSubstituting (2.5) into (2.4) we obtain 

r,lK 
/a 

I 
xp(xR) d,: __-~-- - 

5% 
0 

v/I--r; 
I_i/, 2c~Ty?_ :; 0 

Let us consider in more detail the second integral (2.6): 

(2.6) 

(2.7) 
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& the strength of the first hypothesis, d is small in comparison with 

R, so that x in all regions of integration of 1 - d/R < x < 1 differs 
little from unity and one way take 

(2.8) 

Let us pass over in this integral from the dimensionless variable x 
to the dimensional coordinate s = R - Rr, calculated from the edge of the 

crack and changing within the integration limits from zero to d. We have 

since Rx differs little from R within the limits of integration. 

Substituting this into (2.8) we obtain 

(2.9) 

On the strength of the second hypothesis the distribution F(s) does 

not depend upon the applied load, so that the integral 

d 
F(s)ds 

s- o vi 

represents for a given material at given conditions a constant velue 
which we shall signify by K and shall call the cohesive modulus. 

It is easy to show that the dimensions of the cohesive modulus are 

[K] = FL-“/z 

where F is the dimension of .force and L the dimension of length. The 
cohesive modulus represents a property of a material which has evidently ha 

basic significance in the theory of brittle fracture; it enters into the 

basic relationships regardless of the character of loading and the geo- 
metrical shape of the crack. Thus we have 

(2.10) 

Substituting this relationship into equation (2.6) we obtain, passing 

from the dimensionless variable x to the dimensional variable r: 
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This equation determines the radius of crack R as a function of the 

applied load. 

(2) Let us consider several exanples. Let. the applied load p(r) be 

constant, p(r) = PO. Then the equation (2.11) takes the form: 

P, [R - I/R2 - r:] = K I/; (2.12) 

It is convenient to bring this equation to the dimensionless form 

(2.13) 

A graph of the relationship in (2.13) is given in Fig. 5. We see, 

that for Podrp < K/\l2,equation (2.13) does not have real solutions. 

'lhis fact permits a very sinple interpretation: there exists a certain 

minimum stress, the application of which on a circle of a given radius 

guarantees the possibility of opening the crack. At stresses less than 

this minimum the crack does not open. The magnitude of the minimum stress 

decreases in inverse proportion to the square root of the radius of the 

region of the load application. Each load surpassing the minimum corres- 

ponds to one single radius of the crack. With an increase in load the 

radius of the crack naturally grows. 

Fig. 5. 

It is an especially curious particular case when a crack is formed by 

oppositely directed concentrated forces equal in magnitude and applied 

to opposite sides of the crack. lhis limiting case corresponds to 

r/R<< landPnr*=T, whe 
Wg have from (2123 

re T is the value of the concentrated force. 

(2.14) 
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Whence we obtain 
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(2.2 5) 

lJsing the P-theorem of the theory of similarity (see the hook by 
Sedov [ 111 ), the latter result can he obtained with an accuracy within 

the constant factor of one of the considered dimensions. 

(3) With certain assumptions one can show the existence of a unique 

solution of equation ( 2.11) for an arbitrary load p(r). Indeed, let us 

assume that 

(2.16) 

Jt is evident that with growth of R the function 

decreases monotonically, and the function iti, = KdR /t/ 2 increases 

monotonically. From (2.16) it follows that ml(rO) > @z(r,) and therefore, 

there exists one unique value R > ro, for which fiI(R) = Qz(R), i.e. for 
which ep_ation (2.11) is fulfilled. Ihe inequality (2.16) is the condi- 

tion under which the applied load will surpass the minis load, and 

thus he able to open the crack. 

.7. Axially-symmetric cracks (continuat,ion). (1) Let us con- 
sider normal displacements of points of the surface of the crack, deter- 
mining its width. At a given load the radius of the crack R is determined 
hy the reiationship f 2.11). Knowing the ratfius R one can determine the 
displacements mentioned using the formulas (2.1) and (2.5). We have 

(3.1) 

Let. us consider the inner integral in the expression for qjz. Since by 

is close to unity this integral is close to the integral 
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1 

s xG (~3) dx 

I-dlR 
- j/l--.2 (3.4) 

Mhence also from (3.31 it follows that 

Since d/R is small, + 

p > E-,/R, but 1 - p >> 

is small in comparison with $I. Now let 

d R, f i.e. the considered point of the surface of 
the crack remains at a significant distance from the ends in comparison 

with the dimension of the terminal region d. In this case 

(3.6) 

and $ as before is determined by the relationship (3.31 and consequently, 

by the relationship (3.51. It is evident that also in this case & << I/J~. 

But the value of $I represents the relative displacement, determined at 
a given fixed radius R by the applied load in the absence of cohesive 

forces (and, of course, not satisfying the condition of smooth joining 
at r = R), and the value of $, - the coqonent of relative displacement, 

dependent on the cohesive forces. Therefore, everywhere except directly 

near the edges of the crack, the distribution of the displacements almost 
corresponds to the distribution of the displacements occurring at a 
given fixed radius of crack R in the absence of cohesive forces. This 

means that the cohesive forces essentially have an effect only on the 
value of the radius of the crack and on the distribution of the displace- 

ments close to the edges of the crack and not on the distribution of dis- 

placements in the main part of the crack. 

Fig. 6 Fig. 7 
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In Fig. 6a is given the actual distribution of displacements; in Fig. 
6b is given the distribution of displacement at the sane radius of crack 

but found without considering the cohesive forces. 

(2) let us now consider on those changes which must be introduced to the 

preceding discussion if the breaking load is applied inside the solid 
and not on the surface of the crack. According to our assunption, since 

the load is symmetrical relative to the plane of the crack, shear 

stresses in this plane are absent, Let us assume, according to the fore- 

going, that the state of stress acting in the considered brittle solid 

with a crack is in the form of the sum of tw states of stress; one of 

which represents the state of stress in a continuous body without a crack 
under the action of a given load, and the other a state of stress in a 

body with a crack in the presence of a breaking load at the surface of a 

crack. Let p(r) represent the distribution of normal stress in the plane 
of symmetry under a given load in the absence of a crack. Then the com- 

pressive force at the surface of the crack determining the second state 
of stress is equal to - pfr). Repeating the former reasoning, we obtain 
in place of equation (2.11) an equation determining the radius of the 
crack in the form 

R 

(3.7) 

which differs from equation (2.11) only by the fact that in place of 

radius ro, we use the full radius of the crack R. 

Since the normal displacement of the points of the surface of the 

crack corresponding to the first state of stress; is equal to zero, all 
conclusions relative to the distribution of the displacement of the points 

of the surface of the crack, formulated in the foregoing section also 
hold true. 

(3) Let us consider as an example the problem of the formation of a 
crack by tun oppositely directed concentrated forces T, applied at points 

separated by a distance of 2L (Fig. 7). It is natural to suppose that the 

crack lies in the plane of syrnnetry of the load. Summarizing the well- 

known solutions of Eoussinesq [ 141, it is easy to obtain that 

Condition (3.7) can be rewritten in the form 

(3.8) 

(3.9) 
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Substituting (3.8) in (3.9)‘ we obtain 

1 

The graph of the function g(L/R) has the form shown in Fig. 8. (On 
Fig. 8 is represented the case with V= 0.5). TIere is physical signifi- 
cance only to the left-hand part of the curve up to the minimum point, 

Fig. 8. 

shown by the solid line. In fact, the right-hand part of the curve cor- 
responds to the growth of the crack radius during decrease in load. As 

is evident from the graph of Fig. II, at 

3’ < rc&JW~ (:I. I’) 

equation (3.11) does not have a solution. In complete analogy to the 
foregoing, this means that for such mnall 7’ the crack is not formed. At 

T = TI goKLji2 a crack of a determined final radius R, is foxmed at once 

with further increase in T the radius of the crack R is increased. The 

values go and R, are found by elementary means: at v = 0.5 we have g, = 
0.945, L/R0 = 2.35, at v = 0 we obtain g, = 1.39, L/A, = 2.05. 

Generalizing suitably the discussion of Section 3, part (2) to equa- 

tion (3.71, one can show that such a condition is typical at an applica- 
tion of load inside the solid for a body of infinite dimensions. The 
following is true: if the load, applied inside the body, is proportional 

to some parameter, then at sufficiently small values of this parameter 
an equilibrium crack in general does not form. ilpon reaching some critical 
value of the parameter, a crack of finite radius is imnediately formed. 
Upon further increase of the parameter the crack grows continuously. 
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Let us also note the peculiar limiting case 
vergence of L to zero, i.e. the convergence of 

of forces. From the relationship (3.11) at L/R 

relationship 

brittle fracture 635 

corresponding to the con- 
the points of application 

+ 0 we obtain again the 

coincident with the relationship (2.15), as was to be expected. 

Ihe case of plane cracks will be considered in a separate paper. 
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